## PH4

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 1 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{align*}
\& p=\frac{1}{3} \overline{\rho c^{2}} \text { rearranged } \quad \text { e.g. } \overline{c^{2}}=\frac{3 p}{\rho}  \tag{1}\\
\& c_{\mathrm{rms}}=514\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1)
\end{align*}
\] \\
Mass of particle \(=\frac{3.75}{8.06 \times 10^{22}} g(1)\left[4.63 \times 10^{-26} \mathrm{~kg}\right]=27.9 \mathrm{u}(1)\) [so molar mass \(=27.9\left[\mathrm{~g} \mathrm{~mol}^{-1}\right]\left[\sim 28 \mathrm{~g} \mathrm{~mol}^{-1}\right]\) \\
Or: Amount of gas \(=\frac{8.06 \times 10^{22}}{6.02 \times 10^{23}} \mathrm{~mol}(1)[=0.134 \mathrm{~mol}]\) \\
So molar mass \(=\frac{3.75 \mathrm{~g}}{0.134 \mathrm{~mol}}\left[=28 \mathrm{~g} \mathrm{~mol}^{-1}\right]\)
\[
\begin{aligned}
\& p=m v \text { used, e.g. } p=460 m \\
\& p=2.14 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} / \mathrm{N} \mathrm{~s}((\text { UNIT mark }))(1)
\end{aligned}
\] \\
\(\lambda=\frac{h}{p}\) (1)[manipulation: \(p=\frac{h}{\lambda}\) by itself is not enough] \\
[ or by impl.]
\[
\left.\lambda=3.1 \times 10^{-11[ } \mathrm{m}\right]
\] \\
(1) Allow e.c.f. \\
Question 1 total
\end{tabular} \& 2

2
2
2

2
[8] <br>

\hline 2 \& | (a) |
| :--- |
| (b) |
| (c) |
| (d) |
| (e) | \& | (i) |
| :--- |
| (ii) |
| (i) $\begin{array}{r} \text { (ii) } \\ (\text { iii } \\ \text { ) } \end{array}$ | \& | $(20.0,1.00)$ labelled A and $(23.0,1.00)$ labelled B |
| :--- |
| (23.0, 0.80) labelled C $n=\frac{p V}{R T}(1)$ |
| [manipulation - or by impl. $]=0.745[\mathrm{~mol}]$ (1) |
| $\left[N=n N_{\mathrm{A}}=\right] 4.5 \times 10^{23}$ Allow e.c.f. |
| $T=\frac{p V}{n R}$ [or by impl.]; (or $V / T=$ constant or $P / T=$ constant) |
| $T_{\mathrm{B}}=371[\mathrm{~K}]$ and $T_{\mathrm{C}}=297[\mathrm{~K}]$ (1) e.c.f. |
| at least two values substituted into $E=m c \Delta \theta$ |
| $\Delta \theta=1.36\left[\mathrm{~K}\right.$ or $\left.{ }^{\circ} \mathrm{C}\right](1)$ |
| Area under graph = work or by clear implication (1) |
| detail, e.g. $1 / 2 \times 0.21 \times 10^{5} \times 3 \times 10^{-3} \quad$ (1) [square counting ok] |
| 31.5 [J] or 30 [J] (ans) (1) |
| $\Delta U=Q-W$ quoted or by clear implication or $1^{\text {st }}$ law quoted (1); and $\Delta U=0$ (1) |
| Question 2 total | \& | 1 1 |
| :--- |
| 2 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| [14] | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Marking details \& Marks Available \\
\hline 3 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\(A=\pi \times 1.8^{2}\) or implied in numbers (1) \\
Volume per second \(=\pi r^{2} v\) [or by some method e.g. \(m=\rho v\) ] (1) \\
Mass flow rate \(=\pi \times 1.8^{2} \times 250 \times 0.4\left[=1018 \mathrm{~kg} \mathrm{~s}^{-1}\right](1)\)
\[
\begin{aligned}
\text { Thrust } \& =\text { Mass } / \mathrm{sec} \times \Delta \mathrm{v}(1)[\text { or equiv. }][\text { i.e. }(a) \times \Delta \mathrm{v}][\text { or by impl. }] \\
\& =40[\mathrm{kN}](1)
\end{aligned}
\] \\
Aeroplane momentum is constant (1) [this mark is implied if the candidates imply or state that the exhaust air speed \(=250 \mathrm{~m} \mathrm{~s}^{-1}\) ] No (overall) change in air momentum (1) Or momentum of air forwards (due to drag etc.) (1) is balanced by ( momentum of exhaust air backwards (1) Or equivalents if candidate states momentum of aeroplane is decreasing (due to small decrease in mass i.e. kerosene loss) e.g. momentum of aeroplane is decreasing due to decreasing mass (1) so overall transfer of momentum to air to the right (1) \\
Question 3 Total
\end{tabular} \& \begin{tabular}{l}
3 \\
2 \\
2 \\
[7]
\end{tabular} \\
\hline 4 \& (a)
(b)

(c)
(d) \&  \&  <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 5 \& (a)
(b)
(c)
(d)
(d)
(e) \& (i)
(ii) \& \begin{tabular}{l}
concentric rings: minimum 2 (1) \\
arrows out: minimum 2 (1) \\
correct labelling (1) \\
field inward [or equivalent e.g. opposite] \\
values substituted into \(E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\) \\
(1) [or by impl.] \\
\(E=2.05 \times 10^{7} \mathrm{~V} \mathrm{~m}^{-1}\) or \(\mathrm{N} \mathrm{C}^{-1}\) [or equivalent] ((UN IT mark))(1) \\
values substituted into \(V=\frac{Q}{4 \pi \varepsilon_{0} r}\) (1) [or by impl.]
\[
V=3.24 \times 10^{6}[\mathrm{~V}]
\] \\
zero \\
\(\Delta V=3.24 \times 10^{6}[\mathrm{~V}]\) [or by impl.] Allow e.c.f. (1) \\
\(\Delta P E^{\prime}-q \Delta V\) (1) \\
\(E_{\mathrm{k}}=7.94[\mathrm{~J}]\) (1) \\
Question 5 Total
\end{tabular} \& \begin{tabular}{l}
3 \\
1 \\
2 \\
2
1 \\
3 \\
[12]
\end{tabular} \\
\hline 6 \& (a)
(b)
(c)
(d)
(e) \& (i)
(ii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& f=\frac{1}{T}(1) ; f=1.23[\mathrm{~Hz}](1) \\
\& \omega=2 \pi f \text { or } \frac{2 \pi}{T}(1) \\
\& =2 \pi \times 1.23 \text { (allow e.c.f.) or } 2 \pi / 0.81=\left(7.76 \mathrm{rad} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \\
natural frequency (period) close to walking frequency (period) (1) resonance occurs (1) which could break (or damage) bridge (1) \\
\(A\) and \(\omega s\) subbed into \(y=A \sin \omega t\) (1)
\[
y=-10.3 \mathrm{~cm}
\] \\
[N.B. \(y \sim 2.0 \mathrm{~cm}\) if calculators set to degrees -1 mark only]
\[
\begin{aligned}
\& a=\omega^{2} x \quad a r \omega^{2} A \sin \omega t \quad \text { (1) } \\
\& \alpha^{2} x=9.81 \mathrm{~m} \mathrm{~s}^{-2}(1) x=16.1[\mathrm{~cm}]\left[16.3 \text { if } \omega=7.76 \mathrm{rad} \mathrm{~s}^{-1} \mathrm{used}\right] \text { (1) } \\
\& \text { Point indicated at } \sim 0.12 \mathrm{~s} \text { ecf }(1) \text { and } 2^{\text {nd }} \text { point anywhere }>0.28 \mathrm{~s} \text { (1) }
\end{aligned}
\] \\
Question 6 Total
\end{tabular} \& 2

2

3

2

3
2
[14] <br>
\hline
\end{tabular}

| Question |  | Marking details | Marks Available |
| :---: | :---: | :---: | :---: |
| 7 | (a) | $\begin{aligned} & \Delta \lambda=2.50[ \pm 0.05] \times 10^{-14} \mathrm{~m}(1) \\ & v=\frac{\Delta \lambda}{650 \times 10^{-9}} \times 3.00 \times 10^{8}(1)\left[=11.54 \mathrm{~m} \mathrm{~s}^{-1} \text { if } 2.5 \times 10^{-14} \mathrm{~m} \text { used }\right] \end{aligned}$ | 2 |
|  | (b) | period $=12.4-2.6 \quad[=9.8$ years $] \quad$ allow $9.8 \pm 0.1$ years (1) $v=\frac{2 \pi r}{T}$ or equiv [e.g. $v=\omega r$ and $\omega=\frac{2 \pi}{T}$ ] $(1)$ radius $=5.68 \times 10^{8}[\mathrm{~m}](1)$ Allow e.c.f on $T$ [ $r=5.90 \times 10^{8} \mathrm{~m}$ if $v=12 \mathrm{~m} \mathrm{~s}^{-1}$ used] | 3 |
|  | (c) | $\begin{aligned} & d^{3}=\frac{T^{2} G\left(M_{1}+M_{2}\right)}{4 \pi^{2}} \text { [i.e. algebra nearly complete] (1) } \\ & M_{1}+M_{2} \approx M_{1} \text { stated [or in words] (1) } \\ & d=\sqrt[3]{\frac{(9.81 \times 24 \times 365 \times 3600)^{2} \times 6.67 \times 10^{-11} \times 2 \times 10^{31}}{4 \pi^{2}}} \\ & {\left[=1.48 \times 10^{12} \mathrm{~m}\right] \text { Allow e.c.f. }} \end{aligned}$ | 3 |
|  | (d) | $r_{1} \approx \frac{M_{2}}{M_{1}} d$ or similar (1) <br> $M_{2}=7.7 \times 10^{27} \mathrm{~kg}$ <br> (1) Allow e.c.f. | 2 |
|  | (e) | The temperature of the planet is greater than that of the Earth [or equiv.] (1) <br> Because of factors of 3000 and $10^{2}$ [or $3000 / 10^{2}$ seen] (1) [Accept 30 times hotter] | 2 |
|  |  | Question 7 Total | [12] |

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

